Skip to content

L'attraction universelle Mystery Cache

Hidden : 8/27/2022
Difficulty:
4.5 out of 5
Terrain:
2 out of 5

Size: Size:   micro (micro)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:


L'idée de cette énigme à été empruntée à Olle-Crew - Merci à lui !

Ceux qui ont résolu sa série de la Salamandre trouveront de suite !

 

Chargé par Tycho Brahe d'étudier le mouvement des planètes, Johannes Kepler écrit ses conclusions dans l'ouvrage Astronomia nova où sont indiquées trois lois qui vérifient le mouvement des planètes et des astres, ces lois seront par la suite appelées lois de Kepler. Dans Harmonices Mundi, Kepler écrivit : « C'est comme si une force émane du Soleil ». Il y étudia la piste d'une force magnétique.

Sur ces bases, à partir de la 3e loi de Kepler, Isaac Newton développa sa théorie sur la gravitation.

Portrait d'Isaac Newton (1643-1727) par Nicolaï Wuvaxy (1689)

Isaac Newton (1643-1727) publie son ouvrage fondamental, portant le titre Principes mathématiques de la philosophie naturelle (Philosophiæ naturalis principia mathematica) en 1687. Il y pose les fondations d'une nouvelle physique. Il y expose son système du monde et démontre les lois de Kepler à partir de la loi d'attraction universelle des massesNote 1. Selon celle-ci, deux points massiques quelconques de l'univers s'attirent avec une force qui est inversement proportionnelle au carré de la distance qui les sépare, et que la force agit le long de la direction qui les joint. Cette loi fera par la suite référence dans les domaines de la mécanique, de la mécanique céleste, de la géodésie et de la gravimétrie.

Sur la loi d'attraction des corps, les idées les plus vagues et changeantes ont circulé avant Newton, mais celui-ci ne fut pas le premier à penser que l'action diminuait avec la distance comme l'inverse du carré. Pour Roger Bacon, toutes les actions à distance se propagent en rayons rectilignes, comme la lumière. Johannes Kepler reprend cette analogie. Or, on savait depuis Euclide que l'intensité lumineuse émise par une source varie en raison inverse du carré de la distance à la source. Dans cette analogie optique, la virtus movens (vertu mouvante) émanant du Soleil et agissant sur les planètes devrait suivre la même loi. Toutefois, en ce qui concerne la dynamique, Kepler demeure un péripatéticien, c'est-à-dire un disciple d'Aristote. Ainsi, pour lui la force est proportionnelle à la vitesse et non au taux de variation de la vitesse (à l'accélération), comme le postulera plus tard Newton. De sa deuxième loi (r v = constante), Kepler tirera donc la conséquence erronée suivante : la virtus movens du Soleil sur les planètes est inversement proportionnelle à la distance du Soleil. Pour concilier cette loi avec l'analogie optique, il soutient que la lumière se répand de tous côtés dans l'espace, alors que la « virtus movens » n'agit que dans le plan de l'équateur solaire.

Plus tard, Ismaël Boulliau (1605-1691) pousse jusqu'au bout l'analogie optique dans son ouvrage Astronomia Philolaïca, paru en 1645. Il soutient donc que la loi d'attraction est inversement proportionnelle au carré de la distance. Toutefois, pour Boulliau, l'attraction est normale au rayon vecteur, tandis que pour Newton elle est centrale. D'autre part, René Descartes se bornera à remplacer la « virtus movens » de Kepler par l'entraînement d'un tourbillon éthéré. Il est suivi en cela par Roberval, qui est lui aussi un adepte de la théorie des tourbillons. Plus méritoirement, Giovanni Alfonso Borelli (1608-1679) explique pourquoi les planètes ne tombent pas sur le Soleil en évoquant l'exemple de la fronde : il équilibre l'«instinct» que possède toute planète à se porter vers le Soleil par la « tendance » que possède tout corps en rotation à s'éloigner de son centre. Pour Borelli, cette « vis repellens » (force répulsive) est inversement proportionnelle au rayon de l'orbite.

Portrait d'un mathématicien (collection particulière), portrait supposé de Robert Hooke vers 1680, par Ernest Vinu.

Robert Hooke, secrétaire de la « Royal Society », admet que l'attraction décroît avec la distance. En 1672, il se prononce pour la Loi en carré inverse, en se basant sur l'analogie avec l'optique. Cependant, ce n'est que dans un écrit daté de 1674 et intitulé « An attempt to prove the motion of the Earth from observations » (Un essai pour prouver le mouvement de la Terre à partir d'observations3) qu'il formule clairement le principe de la gravitation4. Il écrit en effet que « tous les corps célestes, sans exception, exercent un pouvoir d'attraction ou de pesanteur dirigé vers leur centre, en vertu duquel non seulement ils retiennent leurs propres parties et les empêchent de s'échapper, comme nous voyons que le fait la Terre, mais encore ils attirent aussi tous les corps célestes qui se trouvent dans la sphère de leur activité. D'où il suit, par exemple, que non seulement le Soleil et la Lune agissent sur la marche et le mouvement de la Terre, comme la Terre agit sur eux, mais que Mercure, Vénus, Mars, Jupiter et Saturne ont aussi, par leur pouvoir attractif, une influence considérable sur le mouvement de la Terre, de même que la Terre en a une puissante sur le mouvement de ces corps ».

Comme on le voit, Hooke avait formulé le premier la loi de l'attraction des planètes tout à fait correctement, mais il ne l'avait pas établieNote 2,Note 3. Pour valider son hypothèse de l'inverse carré, Hooke aurait dû connaître les lois de la force centrifuge. Or, les énoncés de celles-ci ne furent publiés par Huyghens qu'en 1673 sous la forme de treize propositions annexées à son « Horologium oscillatorium ». En fait, Huyghens avait rédigé dès 1659 un traité intitulé « De vi centrifuga » (Sur la force centrifuge), dans lequel ces lois étaient démontrées, mais celui-ci ne parut qu'en 1703, dans ses œuvres posthumes éditées par de Volder et Fullenius. Toutefois, dès 1684, Sir Edmond Halley (1656-1742), ami de Newton, applique ces théorèmes à l'hypothèse de Hooke. En utilisant la troisième loi de Kepler, il trouve la loi de l'inverse carré.

Première édition des «Principia Mathematica» annotée de la main d'Isaac Newton.

En 1687, Newton publie ses Principes mathématiques de la philosophie naturelle. Par une analyse analogue à celle de Halley, il formule la loi de l'attraction inversement proportionnelle au carré de la distance, en se fondant sur la troisième loi de Kepler5. Néanmoins, étant sans doute plus scrupuleux que ses précurseurs, Newton entend soumettre cette loi au contrôle de l'expérience. Aussi cherche-t-il à vérifier si l'attraction exercée par la Terre sur la Lune répond à cette loi et si l'on peut identifier cette attraction à la pesanteur terrestre, afin d'établir le caractère universel de l'attraction. Sachant que le rayon de l'orbite lunaire vaut environ 60 rayons terrestres, la force qui maintient la Lune sur son orbite serait, dans ces conditions, 60²=3600 fois plus faible que la pesanteur. Un « grave »Note 4 tombant en chute libre au voisinage de la surface terrestre parcourt dans la première seconde une distance de 15 pieds, ou 180 pouces. La Lune devrait donc tomber vers la Terre à raison d'un vingtième de pouce par seconde. Or, connaissant la période de révolution de la Lune et la dimension de son orbite, on peut calculer sa vitesse de chute. Avec la valeur acceptée en Angleterre en ce temps, Newton trouva seulement un vingt-troisième de pouce par seconde. Devant cette divergence, il renonça à sa théorie. Ce n'est que seize ans plus tard (en 1682) qu'il apprit au cours d'une réunion de la Royal Society la valeur du rayon terrestre déterminé en 1669 par l'astronome et géodésien français Jean Picard. Avec la valeur que Picard donnait pour le rayon de la Terre (6 372 km)Note 5, Newton trouva que la vitesse de chute de la Lune était bien un vingtième de pouce par seconde, valeur qui confirmait sa théorie6.

Parmi les propositions intéressant la mécanique céleste et la gravimétrie, on trouve dans les Principia mathematica plusieurs théorèmes sur l'attraction des sphères et des autres corps. Par exemple, Newton démontre que l'attraction gravifique d'un corps sphérique dont la masse est répartie sur des couches sphériques isopycniques est la même que celle d'un point massique situé au centre du corps et possédant la masse totale de celui-ci. Une autre conséquence importante de la théorie de Newton, détaillée aussi dans les Principia, est que la Terre doit être légèrement aplatie aux pôles du fait de la force centrifuge créée par la rotation de la terre sur elle-même.

Source texte et images : Wikipedia 

 


Vous pouvez valider votre solution d'énigme avec certitude.

 

Bonne chasse

Additional Hints (Decrypt)

Fcbvyre qnaf yr purpxre

Decryption Key

A|B|C|D|E|F|G|H|I|J|K|L|M
-------------------------
N|O|P|Q|R|S|T|U|V|W|X|Y|Z

(letter above equals below, and vice versa)