Skip to content

Honeycomb Weathering in Krk EarthCache

Hidden : 8/4/2017
Difficulty:
2 out of 5
Terrain:
2 out of 5

Size: Size:   other (other)

Join now to view geocache location details. It's free!

Watch

How Geocaching Works

Please note Use of geocaching.com services is subject to the terms and conditions in our disclaimer.

Geocache Description:




At the listed coordinates you will find a nice example of honeycomb weathering - a special form of weathering that produces extensive networks of small cavities on rock surfaces.

Weathering


In general, weathering is natural process that breaks down rocks into smaller pieces. There are two main types of weathering – mechanical and chemical. Mechanical weathering includes various processes that cause physical disintegration of exposed rock without any change in the chemical composition of the rock. There are several different types of mechanical weathering: thermal expansion, frost shattering, plant activity and abrasion. Chemical weathering includes process by which rocks are broken down by chemical reactions. In these processes, rocks are not only broken down into smaller pieces, they are also chemically changed. Types of chemical weathering processes are hydrolysis, oxidation, carbonation and exposure to acids.

Weathering
Source: Geologycafe.com

There are several important factors that can affect the rate of weathering. They are: (1) exposure to the atmosphere, (2) composition of rock and (3) climate. The degree of exposure of rocks to the atmosphere can significantly affect the rate of weathering. Those rocks that are covered by ground are less affected by weathering because they are less exposed to elements that cause weathering. Different rocks have different mineral composition and different minerals have different chemical composition. Some minerals are more reactive when mixed with water, oxygen or other elements and will weather more rapidly, while others will weather slowly. Also, some minerals are softer than others and they will be more affected by weathering than others. Climate affects the temperature and rainfall of a region. Both temperature and water are important elements in weathering. Warm, humid environments will have higher rates of weathering than cold, dry environments.

Rate of Weathering and Climate
Source: Geography LWC (geographylwc.org.uk)

Weathering is often confused with erosion, although they represent two different types of processes. Weathering occurs in place and no movement is involved in weathering. Rocks are broken down but they stay on their location. If rock fragment is moved from its location then the process is called erosion. Erosion involves movement of rock fragments by some flowing agent such as air, water or ice. So, if a rock fragment is loosened, chemically or mechanically, but stays put, it is weathering. Once the rock fragment starts moving, it is erosion.

Honeycomb Weathering


Honeycomb weathering is a special form of weathering that produces extensive networks of small cavities that form on rock surfaces. Those cavities resemble honeycombs built by bees and hence the name. Honeycomb weathering is also known as fretting, cavernous weathering, alveoli/alveolar weathering, stone lattice, stone lace or miniature tafoni weathering. It can affect a variety of rocks, for example, limestone, sandstone, granite, etc. Honeycomb weathering occurs throughout the world, from the polar regions to the equator. Although it is frequently found in coastal areas, but honeycomb forms can also develop in hot deserts, cold deserts, and many historical buildings. Examples of honeycomb weathering were even found on Mars.

Examples of Honeycomb Weathering
Sources: Manchester Geological Association (mangeolassoc.org.uk); Wikipedia.org; Flickr.com

Although geologists dedicated lots of effort to research of these weathering forms there is still some controversy regarding the exact process of their formation. Nevertheless, there is considerable evidence that salts are present in many cases where honeycombs are formed, so honeycombs are probably developed by some form of salt weathering. Probably both mechanical and chemical weathering processes are involved in the development of honeycombs.

For honeycomb weathering to occur some source of salt is needed. Salts can be naturally present in the rocks or it can be deposited on the surface of the rock by saltwater spray or by wind. Moisture must be present to allow for the salt to settle on the rocks so that as the salt solution evaporates the salt begins to crystallize within the pore-spaces of the rock. Permeable rock is also needed so that there are pore-spaces for the salt to crystallize within. As salt crystals grow they cause mechanical weathering of rock. Also, salts may contribute to honeycomb weathering by inducing chemical weathering of rock. Geologists found that in some regions (arid and hyper-arid environments) honeycomb weathering might be influenced more by some other factors and processes and not linked to salt as source of primary influence (e.g. freeze-thaw, wetting-drying cycles, lithologic variations, micro-climatic variations).

Coastal Honeycomb Weathering


When honeycomb weathering occurs at coastal areas, two different types can be identified: intertidal honeycomb weathering and supratidal honeycomb weathering.

Intertidal honeycomb weathering is found on horizontal planes on rocks within the intertidal zone. The intertidal zone is the area that is above water at low tide and under water at high tide. In other words it is the area between tide marks. Intertidal honeycomb weathering is limited in its growth by the rate of evaporation from the sun. Once the depressions have grown large enough that the sun can not evaporate all of the water left in the gap by the retreating wave, the holes are as large as they will get, because the salt can not dry out and wedge grains apart any longer.

Intertidal and Supratidal Zones
Source: Rollins.edu

Supratidal honeycomb weathering is found on the vertical planes on rock within supratidal zone. The supratidal zone, also known as the splash zone or spray zone, is the area above the spring high tide line. It is regularly splashed, but not submerged by seawater. Seawater penetrates these elevated areas only during storms with high tides. The cause of supratidal honeycomb weathering is still under debate. Some geologists believe that the side walls of the alveoli may be protected from salt weathering by microscopic algae, while others believe that case-hardening, wind and sun exposure, wetting and drying cycles or mineralogical variations within the rock may be responsible. Most likely, a combination of these factors produce these structures in the case of supratidal honeycomb weathering.

Logging Tasks


To log this EarthCache answer the following questions:

1. Observe the rocks at the listed coordinates and find at least one example of honeycomb weathering. Describe in your own words honeycombes that you found.
2. Identify the largest and the smallest cavity within honeycomb that you found. Measure both of them and report their diameter and depth.
3. Observe the location of honeycomb weathering that you found. Would you classify it as intertidal or supratidal honeycomb weathering? Explain.

Send your answers through my profile at geocaching.com (through e-mail or message center) and NOT in a log. You don't have to wait for me to approve your answers. Once you send your answers feel free to log this EarthCache as found. If there are problems with your answers, I will contact you.

Sources


1. Alecia M. Spooner, Geology for Dummies, Hoboken: Wiley Publishing, Inc., 2011.
2. Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. Tasa, Earth: An Introduction to Physical Geology (10th Edition), New York: Pearson, 2010.
3. Carlos Rodriguez-Navarro, Eric Doehne, Eduardo Sebastian, "Origins of honeycomb weathering: The role of salts and wind", GSA Bulletin, vol. 111, no. 8, pp. 1250-1255, 1999.
4. George Mustoe, "Honeycomb Weathering", Encyclopedia of Coastal Science, pp. 529-530, 2005.
5. Wikipedia.org




Na izlistanim koordinatama ćete pronaći lijep primjer saćastog trošenja - posebne vrste trošenja uslijed koje nastaje opsežna mreža malih šupljina na površini stijene.

Trošenje


Općenito, trošenje je prirodni proces koji razbija stijene u manje komade. Postoje dvije glavne vrste trošenja – mehaničko i kemijsko. Mehaničko trošenje obuhvaća različite procese koji uzrokuju fizičko raspadanje stijena bez promjena u njihovom kemijskom sastavu. Nekoliko je različitih vrsta mehaničkog trošenja: termička ekspanzija, drobljenje ledom, aktivnost biljaka i abrazija. Kemijsko trošenje obuhvaća procese raspadanja stijena do kojih dolazi uslijed kemijskih reakcija. U tim procesima ne dolazi samo do raspadanja stijena nego i do promjena u njihovom kemijskom sastavu. Procesi kemijskog trošenja su: hidroliza, oksidacija, karbonizacija i izloženost kiselinama.

Trošenje
Izvor: Geologycafe.com

Nekoliko je važnih faktora koji utječu na brzinu trošenja stijena. Oni su: (1) izloženost atmosferi, (2) sastav stijene i (3) klima. Stupanj izloženosti stijena atmosferi može značajno utjecati na brzinu trošenja. Stijene koje su prekrivene zemljom su u manjoj mjeri podložne trošenju jer su manje izložene elementima koji uzrokuju trošenje. Različite stijene imaju različit mineralni sastav, a različiti minerali imaju različit kemijski sastav. Neki minerali u većoj mjeri reagiraju u kontaktu s vodom, kisikom ili drugim elementima, te će se uslijed toga brže trošiti, dok će se drugi minerali trošiti sporije. Također, neki minerali su mekši od drugih, te će i oni biti više pogođeni trošenjem od ostalih. Klima određuje temperaturu i razinu padalina na određenom području, a upravo su temperatura i voda bitni elementi koji određuju brzinu trošenja. U toplim i vlažnim područjima će trošenje stijena biti brže nego u hladnim i suhim područjima.

Brzina trošenja i klima
Izvor: Geography LWC (geographylwc.org.uk)

Trošenje se često zabunom poistovjećuje s erozijom, iako se radi o dvije različite vrste procesa. Trošenje se događa na mjestu i nikakvo kretanje nije uključeno u procese trošenja. Stijene se razbijaju, ali ostaju na svom mjestu. Ukoliko dolazi do pomicanja dijelova stijena s njihove početne lokacije, tada se radi o procesu erozije. Erozija podrazumijeva kretanje fragmenata stijena uz pomoć određenih pokretnih agenata poput zraka, vode ili leda. Prema tome, ukoliko je fragment stijene razbijen kemijskim ili mehaničkim putem, ali je još uvijek na svojoj početnoj lokaciji riječ je o trošenju. Ukoliko dođe do pomicanja fragmenata stijena s njihove početne lokacije, tada je riječ o eroziji.

Saćasto trošenje


Saćasto trošenje je poseban oblik trošenja koji stvara opsežnu mrežu malih šupljina na površini stijene. Navedene šupljine izgledom podsjećaju na saće koje grade pčele, pa je tako nastalo i ime za ovu vrstu trošenja. Saćasto trošenje se još naziva i kavernozno trošenje, alveolarno trošenje, kamena rešetka, kamena čipka ili minijaturni tafoni. Ova vrsta trošenja se može razviti na različitim vrstama stijena, npr. na vapnencu, pješčenjaku, granitu, itd. Saćasto trošenje se pojavljuje diljem svijeta, od polarnih predijela do ekvatora. Iako se ova vrsta trošenja često može naći na obalnim područjima, saćasti oblici se mogu razviti i u područjima toplih i hladnih pustinja, kao i na mnogim povjesnim građevinama. Primjeri saćastog trošenja su pronađeni čak i na Marsu.

Primjeri saćastog trošenja
Izvori: Manchester Geological Association (mangeolassoc.org.uk); Wikipedia.org; Flickr.com

Iako su geolozi posvetili dosta vremena istraživanju ovih oblika trošenja, još uvijek je prisutna određena kontroverza oko procesa koji vode do njihovog nastanka. Ipak, postoje mnogobrojni dokazi da su soli prisutne u mnogim slučajevima u kojima je došlo do nastanka saćastog trošenja, te se može zaključiti da saće nastaju nekom vrstom solnog trošenja. Vjerojatno su i procesi mehaničkog i procesi kemijskog trošenja uključeni u nastanak saća.

Neki izvor soli je potreban kako bi došlo do saćastog trošenja. Soli mogu biti prisutne u samim stijenama ili mogu biti nanešene na površinu stijene prskanjem morske vode ili vjetrom. Vlaga mora biti prisutna kako bi se soli mogle zadržati na stijenama. Kada otopina soli počne isparavati, tada započinje stvaranje kristala soli u pukotinama stijene. Propusna stijena je također potrebna kako bi postojale pukotine potrebne za stvaranje kristala soli. Rast kristala soli uzrokuje mehaničko trošenje stijene. Također, soli mogu pridonijeti saćastom trošenju pobuđivanjem kemijskog trošenja. Geolozi su utvrdili da u nekim područjima (sušnim i hiper-sušnim okruženjima) saćasto trošenje može biti izazvano i nekim drugim faktorima i procesima, bez povezanosti sa solima (npr. ciklusi vlaženja-sušenja, litološke varijacije, mikro-klimatske varijacije).

Obalno saćasto trošenje


Na obalnim područjima se mogu uočiti dvije zasebne vrste saćastog trošenja: plimno saćasto trošenje i natplimno saćasto trošenje.

Plimno (intertidalno) saćasto trošenje se nalazi na vodoravnim ravninama na stijenama koje se nalaze unutar plimne zone. Plimna zona je područje koje se nalazi iznad vode za vrijeme oseke, a ispod vode za vrijeme plime. Plimno saćasto trošenje je ograničeno u svom rastu brzinom isparavanja pod utjecajem sunca. Jednom kada su šupljine u okviru saća dosegnule veličinu pri kojoj ne može doći do potpunog isparavanja vode koja je zaostala u šupljini nakon povlačenja vala, tada je saće dosegnulo svoju maksimalnu veličinu, jer u tim uvjetima ne moće doći do rasta kristala soli.

Plimne i natplimne zone
Izvor: Rollins.edu

Natplimno saćasto trošenje se nalazi na vertikalnim ravninama na stijenama unutar natplimne zone. Natplimna (supratidalna) zona, koja se još naziva i zona raspršivanja ili zona prskanja, je područje koje se nalazi iznad linije maksimalne plime. Ovo područje je redovito zapljuskivano morskom vodom, ali se nikada ne nalazi ispod vode. Morska voda ulazi u ova područja jedino za vrijeme oluja koje donose visoku plimu. Još uvijek traje rasprava oko uzroka natplimnog saćastog trošenja. Neki geolozi smatraju da su zidovi saća zaštičeni od solnog trošenja pod utjecajem mikroskopskih algi, dok drugi smatraju da su za ovu vrstu saćastog trošenja zaslužni procesi poput otvrdnjavanja površine, izloženosti vjetru i suncu, ciklusa vlaženja i sušenja ili mineroloških varijacija unutar stijene. Kombinacija ovih faktora najvjerojatnije dovodi do stvaranja saća u slučaju natplimnog saćastog trošenja.

Zadaci za logiranje


Kako biste logirali ovaj EarthCache odgovorite na sljedeća pitanja:

1. Promotrite stijene na izlistanim koordinatama i pronađite bar jedan primjer saćastog trošenja. Svojim riječima opišite saće koje ste pronašli.
2. Identificirajte najveću i najmanju šupljinu unutar saća koje ste pronašli. Izmjerite obje šupljine i izvjestite o njihovim promjerima i dubinama.
3. Promotrite lokaciju na kojoj se nalazi pronađeno saćasto trošenje. Kako biste ga klasificirali - kao plimno ili kao natplimno saćasto trošenje? Objasnite.

Odgovore pošaljite preko mog profila na geocaching.com, a NE u Vašem logu! Ne morate čekati na moje potvrđivanje Vaših odgovora. Jednom kada pošaljete Vaše odgovore slobodno logirajte pronalazak ovog EarthCachea. Ako Vaši odgovori budu pogrešni ja ću kontaktirati Vas.

Izvori


1. Alecia M. Spooner, Geology for Dummies, Hoboken: Wiley Publishing, Inc., 2011.
2. Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. Tasa, Earth: An Introduction to Physical Geology (10th Edition), New York: Pearson, 2010.
3. Carlos Rodriguez-Navarro, Eric Doehne, Eduardo Sebastian, "Origins of honeycomb weathering: The role of salts and wind", GSA Bulletin, vol. 111, no. 8, pp. 1250-1255, 1999.
4. George Mustoe, "Honeycomb Weathering", Encyclopedia of Coastal Science, pp. 529-530, 2005.
5. Wikipedia.org

Additional Hints (No hints available.)